CYCOGS® Brand Cyber-Physical Systems  (CPS), Internet of Things  (IoT) consulting

Cyber-Physical Systems  (CPS)

White Board

The CYCOGS® company has been involved in  Cyber-Physical Systems  (CPS)  and the  Internet of Things  (IoT)  well before these terms were coined. 

Several of CYCOGS products are considered  Cyber-Physical System  (CPS)  and or  Internet of Things  (IoT)  systems.  (Including Cloud computing and Mobile Devices) 

A Cyber-Physical System  (CPS)  is a component or mechanism that uses computer-based algorithms for monitoring and control. 

A Cyber-Physical Systems  (CPS)  relies on Physical Hardware and Software systems that are fully integrated resulting in more than the sum of its parts.  The CYCOGS Hybrid Snake Arm System  (Snarm)   is reflective of mechanical Robot Arm components and Local and Remote Software integrations operating as a whole.

By contrast, an  Internet of Things  (IoT)  system is a physical component of varying complexity, able to connect together and send and receive data. 

The CYCOGS  (RESS)  Robot Emergency Stop System in some configurations, falls into this category.  We at the CYCOGS® company feel the real difference between a  Cyber-Physical System  (CPS)  and an Internet of Things  (IoT) system is the complexity and integration to the physical world with its software systems and allowing some Autonomy, where as an  (IoT)  system is more passive, not married to its physical world.  An Internet connected Thermostat would never be confused with a  Cyber-Physical System  (CPS), while the  (IoT)  buzzwords are getting applied to anything connected to the Internet.

Cyber-Physical Systems  (CPS)  typically interact with its physical environment using a mechanism and integrated with computing power to monitor and control its one or more sub components. 

Cyber-Physical Systems  (CPS)  are sometimes called an  Intelligent Mechanisms,  which uses several smaller interacting elements operating as a network, forming a system.

CYCOGS Autonomous Mobile Robotic  Cyber-Physical Systems  (CPS)  use embedded real-time computer control and sensor based robotically controlled tasks involving navigation and object manipulation coupled with an  AI  based physical system allowing a level of self-prediction, evaluation and awareness using known and sensor based environmental knowledge in our Robotic systems.

The CYCOGS® company’s knowledge in  Cyber-Physical Systems  (CPS)  can help you form cyber manufacturing systems for your company.  Cyber-Physical Systems  (CPS)  featuring co-simulation and  5C  architectures  (Connectors, Conversions, Cyber aspects, Cognition and Configuration)  for automated sensor driven manufacturing control systems can enhance your industry manufacturing needs.

CYCOGS knowledge in the Cyber-Physical Systems  (CPS)  can help you, please contact us now.

Contact:  Send questions and comments about this web site to the CYCOGS® Contact.


Internet of Things  (IoT)

By contrast, an  Internet of Things  (IoT)  system is a physical component of varying complexity that is able to connect together and send and receive data using the Internet. 

Some configurations of the CYCOGS  (RESS)  and  (Sring)  are examples of IoT systems.

CYCOGS® staff feel IoT projects require experience, knowledge of the organizations needs and what processes are involved. 

It is best to start with a prototype  /  pilot project in order to determine business planning and prepare for future scalability in order to fully capture the IoT opportunity.  Besides known IoT issues like complexity, data mining, security issues, power use and privacy, is the issue of IoT longevity.  IoT longevity,  or lack of, will require budgeting additional time and resources as maintenance of the IoT devices, sensors and sensor calibration (which degrade over time), and that results in ongoing operating costs.  -  Unexpected ongoing operational costs if this was neglected. 

CYCOGS® staff has an extensive background in sensors, including maintenance and calibration. 

Applying the wrong sensor will yield poor results and/or wasted money on over-capable sensors.  Your data is only as good as the sensor, its calibration, and resulting sensor data.

We know sensors!  Sensors ranging from an on/off switch  (digital 1/0),  including:   Environmental:   Temperature, Relative Humidity (RH), Moisture content, Wind Speed, Precipitation, Sun light levels, Barometric pressure, etc.  Mechanical:   Stress, Strain, Force, Weight, Displacement, Positional, Rotational, Velocity, Acceleration, Gravimetric, Distance, Pressure, Time, Temperature, RPM, Torque, Vibration, Acoustic, Sound, Sonar, flow rate, nuclear thickness, etc.  Electrical:   Sensing the electromagnetic spectrum from Radio wave, microwave, IR, visible, UV, X-Ray, to the Gamma Rays.  This includes Voltage, Current, Power, Resistance, Capacitance, Magnetics, other electrical and electrostatic, etc., to visual color spectrums, temperature sensors, pressure sensors, vacuum sensors, optical sensors, physical sensors, biological sensors, RFID, etc.  Chemical:   Temperature, volumetric, weight, pressure, flow, PH, moisture content, chemical composition / spectral, gas, smoke, reactivity, etc.

While most  IoTetworks of physical devices simply enable things to connect, collect and exchange data. 

IoT usually involves Internet connectivity and covers a wide range of applications in the consumer, commercial, industrial / manufacturing, retail, medical, the infrastructure around us and just about anything.  Many of the IoT devices are simple,  “dumb”  single purpose  “things”.  As the Internet evolves, new capabilities were born, and the IoT concept came into being.  Reading remote sensors and controlling something has been around for a very long time.  The Internet provides such systems with new levels of abilities, such as remote sensor networks, embedded control networks and real time analytics and data collection that can be coupled with Machine Learning to create new abilities.

Many IoT devices simply send small packets of data to a collection point  (database)  on the Internet. 

IoT ranges, from a temperature sensor in a HIVAC system to an RFID chip in a box for logistics.  The CYCOGS® company’s staff feels IoT data should capture its location with Geospatial coding standards  (Geocoding).  Geographic location of the device is very important to know as device location may be critical for data interpretation.  A sensor reading of 9 does not mean much, but it would if it is an earthquake sensor off the coast near your home.

The IoT usage will transform industries and worker experiences as productivity, innovation and usage all improve ROI.  The smart connected objects will integrate more and more and help automate everything.


While  IoT  lately is becoming more of a  buzz word  than a concept in some circles, IoT proponents envision Autonomous Control and Ambient Intelligence, covering everything including  virtual objects  (in VR space using  Intelligent Avatars).  This IoT growth may require common communication protocols and frameworks.  The FTC has recommended IoT guidelines for Data Security, Data Consent  (Privacy)  and Data Collection, and let’s not forget, ethics. 

Here is a typical basic example of how  IoT  works. 

Take a sensor, say a temperature sensor in your hallway.  Connect that sensor to a small simple computer, and that computer polls the sensor, preprocessing the sensor readings  (data)  such as for noise reduction, stores the data until the small simple computer connects to the Internet.  (called an event driven smart application).  As some appointed time or reading interval, the small simple computer establishes a connection to an Internet destination using a connection such as Web Sockets, SignalR, REST, HTTPS/OAuth and then transfers its data into the destination in some storage medium like a file or a database.  The data can then be analyzed using computer algorithms or other analytics, and possibly a response is returned to adjust the temperature.  (or the data is simply saved for future use or actions)

Now if IoT devices are just sending data over some network type like Wi-Fi, Bluetooth, Ethernet, USAT, etc. the IoT device could be behind an IPV4 or IPV6 router/firewall.  But if the IoT device is receiving data or control commands, the IoT device may need a static IP address and or Universal Resource Identifier  (URI)  Universal Resource Locator (URL)  [Address].  IPV4 addresses are filling up, so expect to use IPV6 for IoT devices.  IPV6 allows stateless auto-configured IP addresses.  As for system control, the Internet cannot guarantee performance.  In Open  /  Semi-Open or especially for closed loop  (feedback)  control, if the system response is too fast, loop closure will not keep up and IoT may give unexpected results.  Software Defined Networking  (SDN)  of network packet path control may help.

For some,  IoT is everything for everybody, and the IoT term has been expanded to include many designated uses.

Here is a partial list of IoT types found by some of the CYCOGS® staff.

IoT, the  “generic”  term of  Internet of Things,  covers all the following terms.

IoT sub-name Description
IIoT Industrial Internet of Things, covering Manufacturing, Industrial applications, plant digital control systems, Industry 4.0, predictive maintenance, asset and inventory management.
AIoT Autonomous Internet of Things, covering Autonomous control.
EIot Enterprise Internet of Things, for Business and Corporate devices.
EIoT Environmental Internet of Things, covering remote data, weather data, water / river data, soil data, wildlife data, earthquake and volcanic data.
IIoT Intelligent Internet of Things, that covers Intelligent activities.
IoC Internet of Consumer related, home, health and devices at home.
IoE Internet of Everything, needs no explanation.
IoG Internet of Goods, covers the supply chain of goods and warehousing, including RFID.
IoH Internet of Smart homes, such as lighting, security, digital assistants, HIVAC controls.
IoTB Internet of Things for Buildings, covering lighting, HIVAC, utilities, systems, security, energy efficiency, smart buildings.
IoTC Internet of Things Cities, covers Smart cities and systems inside cities, such as security, ticketing, signage, pollution levels, environmental, power systems.
IoTE Internet of Things Energy, covers smart power generation, consumption, devices such as light bulbs, HIVAC, appliances, and electronics.
IoTF / IoTA Internet of Things for Farming / Agriculture, covers Farming and Agriculture, weather data, soil and crop data and animal data.
IoTF Internet of Things Food, covers food related devices.
IoTG Internet of Things, Government covers Governmental devices.
HIoT / IoHT / IoMT Internet of Things for Medical / Health related, covering smart healthcare, remote health monitoring and medical devices.
IoTK Internet of Things knitting, covers yarn and knitting systems including RFID.
IoTM Internet of Things Military, covers the Military devices and systems.
IoTI Internet of Things Infrastructure, covering transportation, roads, tracks, bridges, power generation, water and sanitary systems.
IoTR / IoRT Internet of Things Robotics / Internet of Robotic Things, covers Robotics on the Internet.
IoTSF Internet of Things Security Foundation.
IoTT Internet of Things for Transportation, covering roads, vehicles, parking, tolls, safety, traffic and of course, enforcement.
IoTT Internet of Things Telephony, covers Telephony, Telepresence and VoIP voice communications.
IoV Internet of Vehicles.
IoTZ Internet of Things Zero, covers Zero IoT Things.

This is but a few of the IoT terms.  Feel like the IoT term use, duplication and naming is getting out of control?  CYCOGS staff prefers the simple  IoT  term.

The CYCOGS® company can help you with these and other IoT focus areas:

- Implement a Cyber-Physical Systems  (CPS)  on your devices.
- Raise your embedded computer-controlled device to the level of a CPS system.
- Implement an Internet of Things  (IoT)  system from one sensor on up.
- Create an IoT control system.
- Implement an  AI  /  ML  based data control system for your CPS or IoT systems.
- Select sensors and other hardware for your CPS or IoT systems.
- Develop Internet based IoT endpoints for data processing and storage.

Test Equipment Software

Test and automated systems software development.  The design, development, implementation, and maintenance of systems based on PC type computers.  Custom and canned systems, including both hardware and software.  Applications range from simple test data collection to complex automated Experienced with systems in the testing and manufacturing areas.  The leverage of existing components to reduce excessive customization. 

Data Acquisition and Human Machine Interface

Data Acquisition and Human Machine Interface systems using custom and canned products, including both hardware and software.  Applications range from simple test data collection to complex automated systems.  We can provide systems design, development, implementation, and maintenance.  We integrate PC type computers using Microsoft Windows, including the use of networks and the Internet for DAQ and HMI solutions. 

• Custom Programming.
• Canned programs such as NI LabVIEW and Wonderware/Aveva.
• C, C++ and C# coding, using, Visual Studio .NET and NI CVI.
• Embedded Controllers, SBC and microcontrollers. CAMAC systems.
• Ethernet, CAN, serial, SPI, etc.
• Remote Control/Monitor using Serial, Ethernet, IR, Radio and Cellular.
• VXI, VME, PC and PLC type systems.
• DAQ / DAS Data Acquisition Systems and loggers.
• Vision Systems.


If your IoT plans are becoming  IoT =  !#$%^&,  let us at the CYCOGS® company help you make IoT a success for you. 
Please contact us now for CYCOGS® Brand Cyber-Physical Systems  (CPS), Internet of Things  (IoT) consulting at: 
Sales E-mail:

The CPS and the IoT space are evolving and complex, please contact us to help you prepare now. 
Contact information such as your name, email address, title, company, and telephone number.

Contact:  Send questions and comments about this web site to the CYCOGS® Contact.